Contract Name:
LzOftHelper
Contract Source Code:
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.26;
import "contracts/proxies/Upgradeable2Step.sol";
import "contracts/s/IOFT.sol";
import "contracts/common/Rescuable.sol";
contract LzOftHelper is Upgradeable2Step, Rescuable {
using SafeERC20 for IERC20;
event ToggleOFTContract(address indexed oftContract, bool indexed isEnabled);
/// @notice Mapping of allowed OFT contracts and their enabled status.
mapping (IOFT => bool) public allowedOFTs;
function send(IOFT oftContract, IOFT.SendParam memory _sendParam) external returns (IOFT.MessagingReceipt memory msgReceipt, IOFT.OFTReceipt memory oftReceipt) {
require(allowedOFTs[oftContract], "unauthorized OFT");
// override supplied values
//ref: https://docs.layerzero.network/v2/developers/evm/oft/quickstart#message-execution-options
_sendParam.extraOptions = hex'0003010011010000000000000000000000000000ea60';
_sendParam.composeMsg = "";
_sendParam.oftCmd = "";
// handles transfers for OFT and OFTAdapter underlying token
IERC20(oftContract.token()).safeTransferFrom(msg.sender, address(this), _sendParam.amountLD);
IOFT.MessagingFee memory _fee = oftContract.quoteSend(_sendParam, false);
require(address(this).balance >= _fee.nativeFee, "not enough fee token");
return oftContract.send{value: _fee.nativeFee}(_sendParam, _fee, address(this));
}
function quoteSend(IOFT oftContract, IOFT.SendParam memory _sendParam) external view returns (IOFT.MessagingFee memory msgFee) {
// override supplied values
//ref: https://docs.layerzero.network/v2/developers/evm/oft/quickstart#message-execution-options
_sendParam.extraOptions = hex'0003010011010000000000000000000000000000ea60';
_sendParam.composeMsg = "";
_sendParam.oftCmd = "";
return oftContract.quoteSend(_sendParam, false);
}
function toggleOFTContract(IOFT oftContract_, bool isEnabled_) external onlyOwner {
allowedOFTs[oftContract_] = isEnabled_;
if (isEnabled_) {
// handles OFT approval if necessary
if (oftContract_.approvalRequired()) {
IERC20(oftContract_.token()).forceApprove(address(oftContract_), type(uint256).max);
}
} else {
IERC20(oftContract_.token()).forceApprove(address(oftContract_), 0);
}
emit ToggleOFTContract(address(oftContract_), isEnabled_);
}
function addressToBytes32(address _addr) external pure returns (bytes32) {
return bytes32(uint256(uint160(_addr)));
}
function _requireRescuerRole() internal view override {
_checkOwner();
}
// allowed to receive native token
receive() external payable {}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.26;
import "contracts/access/Ownable2Step.sol";
/**
* @title Upgradeable2Step
* @notice This contract implements a two-step process for upgrading the implementation address. It provides security by allowing the owner to propose a new implementation and the implementation to accept itself.
* @dev Inherits from `Ownable2Step`, allowing the contract owner to initiate the upgrade process, which must then be accepted by the proposed implementation.
*/
contract Upgradeable2Step is Ownable2Step {
/// @notice The slot containing the address of the pending implementation contract.
bytes32 public constant PENDING_IMPLEMENTATION_SLOT = keccak256("PENDING_IMPLEMENTATION_SLOT");
/// @notice The slot containing the address of the current implementation contract.
bytes32 public constant IMPLEMENTATION_SLOT = keccak256("IMPLEMENTATION_SLOT");
/**
* @dev Emitted when a new implementation is proposed.
* @param previousImplementation The address of the previous implementation.
* @param newImplementation The address of the new implementation proposed.
*/
event ReplaceImplementationStarted(address indexed previousImplementation, address indexed newImplementation);
/**
* @dev Emitted when a new implementation is accepted and becomes active.
* @param previousImplementation The address of the previous implementation.
* @param newImplementation The address of the new active implementation.
*/
event ReplaceImplementation(address indexed previousImplementation, address indexed newImplementation);
/**
* @dev Thrown when an unauthorized account attempts to execute a restricted function.
*/
error Unauthorized();
/**
* @notice Initializes the contract and sets the deployer as the initial owner.
* @dev Passes the deployer address to the `Ownable2Step` constructor.
*/
constructor() Ownable(msg.sender) {}
/**
* @notice Starts the implementation replacement process by setting a new pending implementation address.
* @dev Can only be called by the owner. Emits the `ReplaceImplementationStarted` event.
* @param impl_ The address of the new implementation contract to be set as pending.
*/
function replaceImplementation(address impl_) public onlyOwner {
bytes32 slot_pending = PENDING_IMPLEMENTATION_SLOT;
assembly {
sstore(slot_pending, impl_)
}
emit ReplaceImplementationStarted(implementation(), impl_);
}
/**
* @notice Completes the implementation replacement process by accepting the pending implementation.
* @dev Can only be called by the pending implementation itself. Emits the `ReplaceImplementation` event and updates the `implementation` state.
* Deletes the `pendingImplementation` address upon successful acceptance.
*/
function acceptImplementation() public {
if (msg.sender != pendingImplementation()) {
revert OwnableUnauthorizedAccount(msg.sender);
}
emit ReplaceImplementation(implementation(), msg.sender);
bytes32 slot_pending = PENDING_IMPLEMENTATION_SLOT;
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
sstore(slot_pending, 0)
sstore(slot, caller())
}
}
/**
* @notice Allows a new implementation to become the active implementation in a proxy contract.
* @dev Can only be called by the owner of the specified proxy contract. Calls `acceptImplementation` on the proxy contract.
* @param proxy The proxy contract where the new implementation should be accepted.
*/
function becomeImplementation(Upgradeable2Step proxy) public {
if (msg.sender != proxy.owner()) {
revert Unauthorized();
}
proxy.acceptImplementation();
}
/**
* @notice Returns the pending implementation address
* @return The pending implementation address
*/
function pendingImplementation() public view returns (address) {
address pendingImplementation_;
bytes32 slot_pending = PENDING_IMPLEMENTATION_SLOT;
assembly {
pendingImplementation_ := sload(slot_pending)
}
return pendingImplementation_;
}
/**
* @notice Returns the current implementation address
* @return The current implementation address
*/
function implementation() public view returns (address) {
address implementation_;
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
implementation_ := sload(slot)
}
return implementation_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "contracts/access/Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "contracts/utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.26;
import { IERC20 } from "contracts/token/ERC20/IERC20.sol";
interface IOFT is IERC20 {
/**
* @dev Struct representing token parameters for the OFT send() operation.
*/
struct SendParam {
uint32 dstEid; // Destination endpoint ID.
bytes32 to; // Recipient address.
uint256 amountLD; // Amount to send in local decimals.
uint256 minAmountLD; // Minimum amount to send in local decimals.
bytes extraOptions; // Additional options supplied by the caller to be used in the LayerZero message.
bytes composeMsg; // The composed message for the send() operation.
bytes oftCmd; // The OFT command to be executed, unused in default OFT implementations.
}
struct MessagingFee {
uint nativeFee; // gas amount in native gas token
uint lzTokenFee; // gas amount in ZRO token
}
struct MessagingReceipt {
bytes32 guid;
uint64 nonce;
MessagingFee fee;
}
struct OFTReceipt {
uint256 amountSentLD; // Amount of tokens ACTUALLY debited from the sender in local decimals.
// @dev In non-default implementations, the amountReceivedLD COULD differ from this value.
uint256 amountReceivedLD; // Amount of tokens to be received on the remote side.
}
// @dev executes a cross-chain OFT swap via layerZero Endpoint
function send(SendParam calldata _sendParam, MessagingFee calldata _fee, address _refundAddress) external payable returns (MessagingReceipt memory msgReceipt, OFTReceipt memory oftReceipt);
/**
* @notice Provides a quote for the send() operation.
* @param _sendParam The parameters for the send() operation.
* @param _payInLzToken Flag indicating whether the caller is paying in the LZ token.
* @return msgFee The calculated LayerZero messaging fee from the send() operation.
*
* @dev MessagingFee: LayerZero msg fee
* - nativeFee: The native fee.
* - lzTokenFee: The lzToken fee.
*/
function quoteSend(SendParam calldata _sendParam, bool _payInLzToken) external view returns (MessagingFee memory msgFee);
/**
* @dev Retrieves the address of the underlying ERC20 implementation.
* @return The address of the adapted ERC-20 token.
*
* @dev In the case of OFT, address(this) and erc20 are the same contract.
* @dev In the case of OFTAdapter, address(this) and erc20 are NOT the same contract.
*/
function token() external view returns (address);
/**
* @notice Indicates whether the OFT contract requires approval of the 'token()' to send.
* @return requiresApproval Needs approval of the underlying token implementation.
*
* @dev In the case of OFT where the contract IS the token, approval is NOT required.
* @dev In the case of default OFTAdapter, approval is required.
* @dev In non-default OFTAdapter contracts with something like mint and burn privileges, it would NOT need approval.
*/
function approvalRequired() external pure virtual returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
import "contracts/token/ERC20/utils/SafeERC20.sol";
abstract contract Rescuable {
using SafeERC20 for IERC20;
/**
* @notice Override this function in inheriting contracts to set appropriate permissions
*/
function _requireRescuerRole() internal view virtual;
/**
* @notice Allows the rescue of ERC20 tokens held by the contract
* @param token The ERC20 token to be rescued
*/
function rescue(IERC20 token) external {
_requireRescuerRole();
uint256 balance = token.balanceOf(address(this));
token.safeTransfer(msg.sender, balance);
}
/**
* @notice Allows the rescue of Ether held by the contract
*/
function rescueEth() external{
_requireRescuerRole();
uint256 balance = address(this).balance;
(bool success, ) = msg.sender.call{value: balance}("");
require(success, "Transfer failed");
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "contracts/token/ERC20/IERC20.sol";
import {IERC20Permit} from "contracts/token/ERC20/extensions/IERC20Permit.sol";
import {Address} from "contracts/utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}