Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { EIP1271Verifier } from "./eip1271/EIP1271Verifier.sol";
import { ISchemaResolver } from "./resolver/ISchemaResolver.sol";
// prettier-ignore
import {
AccessDenied,
EMPTY_UID,
InvalidLength,
NotFound,
NO_EXPIRATION_TIME,
uncheckedInc
} from "./Common.sol";
// prettier-ignore
import {
Attestation,
AttestationRequest,
AttestationRequestData,
DelegatedAttestationRequest,
DelegatedRevocationRequest,
IEAS,
MultiAttestationRequest,
MultiDelegatedAttestationRequest,
MultiDelegatedRevocationRequest,
MultiRevocationRequest,
RevocationRequest,
RevocationRequestData
} from "./IEAS.sol";
import { Semver } from "./Semver.sol";
import { ISchemaRegistry, SchemaRecord } from "./ISchemaRegistry.sol";
/// @title EAS
/// @notice The Ethereum Attestation Service protocol.
contract EAS is IEAS, Semver, EIP1271Verifier {
using Address for address payable;
error AlreadyRevoked();
error AlreadyRevokedOffchain();
error AlreadyTimestamped();
error InsufficientValue();
error InvalidAttestation();
error InvalidAttestations();
error InvalidExpirationTime();
error InvalidOffset();
error InvalidRegistry();
error InvalidRevocation();
error InvalidRevocations();
error InvalidSchema();
error InvalidVerifier();
error Irrevocable();
error NotPayable();
error WrongSchema();
/// @notice A struct representing an internal attestation result.
struct AttestationsResult {
uint256 usedValue; // Total ETH amount that was sent to resolvers.
bytes32[] uids; // UIDs of the new attestations.
}
// The global schema registry.
ISchemaRegistry private immutable _schemaRegistry;
// The global mapping between attestations and their UIDs.
mapping(bytes32 uid => Attestation attestation) private _db;
// The global mapping between data and their timestamps.
mapping(bytes32 data => uint64 timestamp) private _timestamps;
// The global mapping between data and their revocation timestamps.
mapping(address revoker => mapping(bytes32 data => uint64 timestamp) timestamps) private _revocationsOffchain;
/// @dev Creates a new EAS instance.
/// @param registry The address of the global schema registry.
constructor(ISchemaRegistry registry) Semver(1, 3, 0) EIP1271Verifier("EAS", "1.3.0") {
if (address(registry) == address(0)) {
revert InvalidRegistry();
}
_schemaRegistry = registry;
}
/// @inheritdoc IEAS
function getSchemaRegistry() external view returns (ISchemaRegistry) {
return _schemaRegistry;
}
/// @inheritdoc IEAS
function attest(AttestationRequest calldata request) external payable returns (bytes32) {
AttestationRequestData[] memory data = new AttestationRequestData[](1);
data[0] = request.data;
return _attest(request.schema, data, msg.sender, msg.value, true).uids[0];
}
/// @inheritdoc IEAS
function attestByDelegation(
DelegatedAttestationRequest calldata delegatedRequest
) external payable returns (bytes32) {
_verifyAttest(delegatedRequest);
AttestationRequestData[] memory data = new AttestationRequestData[](1);
data[0] = delegatedRequest.data;
return _attest(delegatedRequest.schema, data, delegatedRequest.attester, msg.value, true).uids[0];
}
/// @inheritdoc IEAS
function multiAttest(MultiAttestationRequest[] calldata multiRequests) external payable returns (bytes32[] memory) {
// Since a multi-attest call is going to make multiple attestations for multiple schemas, we'd need to collect
// all the returned UIDs into a single list.
uint256 length = multiRequests.length;
bytes32[][] memory totalUIDs = new bytes32[][](length);
uint256 totalUIDCount = 0;
// We are keeping track of the total available ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint256 availableValue = msg.value;
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
// The last batch is handled slightly differently: if the total available ETH wasn't spent in full and there
// is a remainder - it will be refunded back to the attester (something that we can only verify during the
// last and final batch).
bool last;
unchecked {
last = i == length - 1;
}
// Process the current batch of attestations.
MultiAttestationRequest calldata multiRequest = multiRequests[i];
// Ensure that data isn't empty.
if (multiRequest.data.length == 0) {
revert InvalidLength();
}
AttestationsResult memory res = _attest(
multiRequest.schema,
multiRequest.data,
msg.sender,
availableValue,
last
);
// Ensure to deduct the ETH that was forwarded to the resolver during the processing of this batch.
availableValue -= res.usedValue;
// Collect UIDs (and merge them later).
totalUIDs[i] = res.uids;
unchecked {
totalUIDCount += res.uids.length;
}
}
// Merge all the collected UIDs and return them as a flatten array.
return _mergeUIDs(totalUIDs, totalUIDCount);
}
/// @inheritdoc IEAS
function multiAttestByDelegation(
MultiDelegatedAttestationRequest[] calldata multiDelegatedRequests
) external payable returns (bytes32[] memory) {
// Since a multi-attest call is going to make multiple attestations for multiple schemas, we'd need to collect
// all the returned UIDs into a single list.
uint256 length = multiDelegatedRequests.length;
bytes32[][] memory totalUIDs = new bytes32[][](length);
uint256 totalUIDCount = 0;
// We are keeping track of the total available ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint256 availableValue = msg.value;
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
// The last batch is handled slightly differently: if the total available ETH wasn't spent in full and there
// is a remainder - it will be refunded back to the attester (something that we can only verify during the
// last and final batch).
bool last;
unchecked {
last = i == length - 1;
}
MultiDelegatedAttestationRequest calldata multiDelegatedRequest = multiDelegatedRequests[i];
AttestationRequestData[] calldata data = multiDelegatedRequest.data;
// Ensure that no inputs are missing.
uint256 dataLength = data.length;
if (dataLength == 0 || dataLength != multiDelegatedRequest.signatures.length) {
revert InvalidLength();
}
// Verify signatures. Please note that the signatures are assumed to be signed with increasing nonces.
for (uint256 j = 0; j < dataLength; j = uncheckedInc(j)) {
_verifyAttest(
DelegatedAttestationRequest({
schema: multiDelegatedRequest.schema,
data: data[j],
signature: multiDelegatedRequest.signatures[j],
attester: multiDelegatedRequest.attester,
deadline: multiDelegatedRequest.deadline
})
);
}
// Process the current batch of attestations.
AttestationsResult memory res = _attest(
multiDelegatedRequest.schema,
data,
multiDelegatedRequest.attester,
availableValue,
last
);
// Ensure to deduct the ETH that was forwarded to the resolver during the processing of this batch.
availableValue -= res.usedValue;
// Collect UIDs (and merge them later).
totalUIDs[i] = res.uids;
unchecked {
totalUIDCount += res.uids.length;
}
}
// Merge all the collected UIDs and return them as a flatten array.
return _mergeUIDs(totalUIDs, totalUIDCount);
}
/// @inheritdoc IEAS
function revoke(RevocationRequest calldata request) external payable {
RevocationRequestData[] memory data = new RevocationRequestData[](1);
data[0] = request.data;
_revoke(request.schema, data, msg.sender, msg.value, true);
}
/// @inheritdoc IEAS
function revokeByDelegation(DelegatedRevocationRequest calldata delegatedRequest) external payable {
_verifyRevoke(delegatedRequest);
RevocationRequestData[] memory data = new RevocationRequestData[](1);
data[0] = delegatedRequest.data;
_revoke(delegatedRequest.schema, data, delegatedRequest.revoker, msg.value, true);
}
/// @inheritdoc IEAS
function multiRevoke(MultiRevocationRequest[] calldata multiRequests) external payable {
// We are keeping track of the total available ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint256 availableValue = msg.value;
uint256 length = multiRequests.length;
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
// The last batch is handled slightly differently: if the total available ETH wasn't spent in full and there
// is a remainder - it will be refunded back to the attester (something that we can only verify during the
// last and final batch).
bool last;
unchecked {
last = i == length - 1;
}
MultiRevocationRequest calldata multiRequest = multiRequests[i];
// Ensure to deduct the ETH that was forwarded to the resolver during the processing of this batch.
availableValue -= _revoke(multiRequest.schema, multiRequest.data, msg.sender, availableValue, last);
}
}
/// @inheritdoc IEAS
function multiRevokeByDelegation(
MultiDelegatedRevocationRequest[] calldata multiDelegatedRequests
) external payable {
// We are keeping track of the total available ETH amount that can be sent to resolvers and will keep deducting
// from it to verify that there isn't any attempt to send too much ETH to resolvers. Please note that unless
// some ETH was stuck in the contract by accident (which shouldn't happen in normal conditions), it won't be
// possible to send too much ETH anyway.
uint256 availableValue = msg.value;
uint256 length = multiDelegatedRequests.length;
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
// The last batch is handled slightly differently: if the total available ETH wasn't spent in full and there
// is a remainder - it will be refunded back to the attester (something that we can only verify during the
// last and final batch).
bool last;
unchecked {
last = i == length - 1;
}
MultiDelegatedRevocationRequest memory multiDelegatedRequest = multiDelegatedRequests[i];
RevocationRequestData[] memory data = multiDelegatedRequest.data;
// Ensure that no inputs are missing.
uint256 dataLength = data.length;
if (dataLength == 0 || dataLength != multiDelegatedRequest.signatures.length) {
revert InvalidLength();
}
// Verify signatures. Please note that the signatures are assumed to be signed with increasing nonces.
for (uint256 j = 0; j < dataLength; j = uncheckedInc(j)) {
_verifyRevoke(
DelegatedRevocationRequest({
schema: multiDelegatedRequest.schema,
data: data[j],
signature: multiDelegatedRequest.signatures[j],
revoker: multiDelegatedRequest.revoker,
deadline: multiDelegatedRequest.deadline
})
);
}
// Ensure to deduct the ETH that was forwarded to the resolver during the processing of this batch.
availableValue -= _revoke(
multiDelegatedRequest.schema,
data,
multiDelegatedRequest.revoker,
availableValue,
last
);
}
}
/// @inheritdoc IEAS
function timestamp(bytes32 data) external returns (uint64) {
uint64 time = _time();
_timestamp(data, time);
return time;
}
/// @inheritdoc IEAS
function revokeOffchain(bytes32 data) external returns (uint64) {
uint64 time = _time();
_revokeOffchain(msg.sender, data, time);
return time;
}
/// @inheritdoc IEAS
function multiRevokeOffchain(bytes32[] calldata data) external returns (uint64) {
uint64 time = _time();
uint256 length = data.length;
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
_revokeOffchain(msg.sender, data[i], time);
}
return time;
}
/// @inheritdoc IEAS
function multiTimestamp(bytes32[] calldata data) external returns (uint64) {
uint64 time = _time();
uint256 length = data.length;
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
_timestamp(data[i], time);
}
return time;
}
/// @inheritdoc IEAS
function getAttestation(bytes32 uid) external view returns (Attestation memory) {
return _db[uid];
}
/// @inheritdoc IEAS
function isAttestationValid(bytes32 uid) public view returns (bool) {
return _db[uid].uid != EMPTY_UID;
}
/// @inheritdoc IEAS
function getTimestamp(bytes32 data) external view returns (uint64) {
return _timestamps[data];
}
/// @inheritdoc IEAS
function getRevokeOffchain(address revoker, bytes32 data) external view returns (uint64) {
return _revocationsOffchain[revoker][data];
}
/// @dev Attests to a specific schema.
/// @param schemaUID The unique identifier of the schema to attest to.
/// @param data The arguments of the attestation requests.
/// @param attester The attesting account.
/// @param availableValue The total available ETH amount that can be sent to the resolver.
/// @param last Whether this is the last attestations/revocations set.
/// @return The UID of the new attestations and the total sent ETH amount.
function _attest(
bytes32 schemaUID,
AttestationRequestData[] memory data,
address attester,
uint256 availableValue,
bool last
) private returns (AttestationsResult memory) {
uint256 length = data.length;
AttestationsResult memory res;
res.uids = new bytes32[](length);
// Ensure that we aren't attempting to attest to a non-existing schema.
SchemaRecord memory schemaRecord = _schemaRegistry.getSchema(schemaUID);
if (schemaRecord.uid == EMPTY_UID) {
revert InvalidSchema();
}
Attestation[] memory attestations = new Attestation[](length);
uint256[] memory values = new uint256[](length);
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
AttestationRequestData memory request = data[i];
// Ensure that either no expiration time was set or that it was set in the future.
if (request.expirationTime != NO_EXPIRATION_TIME && request.expirationTime <= _time()) {
revert InvalidExpirationTime();
}
// Ensure that we aren't trying to make a revocable attestation for a non-revocable schema.
if (!schemaRecord.revocable && request.revocable) {
revert Irrevocable();
}
Attestation memory attestation = Attestation({
uid: EMPTY_UID,
schema: schemaUID,
refUID: request.refUID,
time: _time(),
expirationTime: request.expirationTime,
revocationTime: 0,
recipient: request.recipient,
attester: attester,
revocable: request.revocable,
data: request.data
});
// Look for the first non-existing UID (and use a bump seed/nonce in the rare case of a conflict).
bytes32 uid;
uint32 bump = 0;
while (true) {
uid = _getUID(attestation, bump);
if (_db[uid].uid == EMPTY_UID) {
break;
}
unchecked {
++bump;
}
}
attestation.uid = uid;
_db[uid] = attestation;
if (request.refUID != EMPTY_UID) {
// Ensure that we aren't trying to attest to a non-existing referenced UID.
if (!isAttestationValid(request.refUID)) {
revert NotFound();
}
}
attestations[i] = attestation;
values[i] = request.value;
res.uids[i] = uid;
emit Attested(request.recipient, attester, uid, schemaUID);
}
res.usedValue = _resolveAttestations(schemaRecord, attestations, values, false, availableValue, last);
return res;
}
/// @dev Revokes an existing attestation to a specific schema.
/// @param schemaUID The unique identifier of the schema to attest to.
/// @param data The arguments of the revocation requests.
/// @param revoker The revoking account.
/// @param availableValue The total available ETH amount that can be sent to the resolver.
/// @param last Whether this is the last attestations/revocations set.
/// @return Returns the total sent ETH amount.
function _revoke(
bytes32 schemaUID,
RevocationRequestData[] memory data,
address revoker,
uint256 availableValue,
bool last
) private returns (uint256) {
// Ensure that a non-existing schema ID wasn't passed by accident.
SchemaRecord memory schemaRecord = _schemaRegistry.getSchema(schemaUID);
if (schemaRecord.uid == EMPTY_UID) {
revert InvalidSchema();
}
uint256 length = data.length;
Attestation[] memory attestations = new Attestation[](length);
uint256[] memory values = new uint256[](length);
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
RevocationRequestData memory request = data[i];
Attestation storage attestation = _db[request.uid];
// Ensure that we aren't attempting to revoke a non-existing attestation.
if (attestation.uid == EMPTY_UID) {
revert NotFound();
}
// Ensure that a wrong schema ID wasn't passed by accident.
if (attestation.schema != schemaUID) {
revert InvalidSchema();
}
// Allow only original attesters to revoke their attestations.
if (attestation.attester != revoker) {
revert AccessDenied();
}
// Please note that also checking of the schema itself is revocable is unnecessary, since it's not possible to
// make revocable attestations to an irrevocable schema.
if (!attestation.revocable) {
revert Irrevocable();
}
// Ensure that we aren't trying to revoke the same attestation twice.
if (attestation.revocationTime != 0) {
revert AlreadyRevoked();
}
attestation.revocationTime = _time();
attestations[i] = attestation;
values[i] = request.value;
emit Revoked(attestations[i].recipient, revoker, request.uid, schemaUID);
}
return _resolveAttestations(schemaRecord, attestations, values, true, availableValue, last);
}
/// @dev Resolves a new attestation or a revocation of an existing attestation.
/// @param schemaRecord The schema of the attestation.
/// @param attestation The data of the attestation to make/revoke.
/// @param value An explicit ETH amount to send to the resolver.
/// @param isRevocation Whether to resolve an attestation or its revocation.
/// @param availableValue The total available ETH amount that can be sent to the resolver.
/// @param last Whether this is the last attestations/revocations set.
/// @return Returns the total sent ETH amount.
function _resolveAttestation(
SchemaRecord memory schemaRecord,
Attestation memory attestation,
uint256 value,
bool isRevocation,
uint256 availableValue,
bool last
) private returns (uint256) {
ISchemaResolver resolver = schemaRecord.resolver;
if (address(resolver) == address(0)) {
// Ensure that we don't accept payments if there is no resolver.
if (value != 0) {
revert NotPayable();
}
if (last) {
_refund(availableValue);
}
return 0;
}
// Ensure that we don't accept payments which can't be forwarded to the resolver.
if (value != 0) {
if (!resolver.isPayable()) {
revert NotPayable();
}
// Ensure that the attester/revoker doesn't try to spend more than available.
if (value > availableValue) {
revert InsufficientValue();
}
// Ensure to deduct the sent value explicitly.
unchecked {
availableValue -= value;
}
}
if (isRevocation) {
if (!resolver.revoke{ value: value }(attestation)) {
revert InvalidRevocation();
}
} else if (!resolver.attest{ value: value }(attestation)) {
revert InvalidAttestation();
}
if (last) {
_refund(availableValue);
}
return value;
}
/// @dev Resolves multiple attestations or revocations of existing attestations.
/// @param schemaRecord The schema of the attestation.
/// @param attestations The data of the attestations to make/revoke.
/// @param values Explicit ETH amounts to send to the resolver.
/// @param isRevocation Whether to resolve an attestation or its revocation.
/// @param availableValue The total available ETH amount that can be sent to the resolver.
/// @param last Whether this is the last attestations/revocations set.
/// @return Returns the total sent ETH amount.
function _resolveAttestations(
SchemaRecord memory schemaRecord,
Attestation[] memory attestations,
uint256[] memory values,
bool isRevocation,
uint256 availableValue,
bool last
) private returns (uint256) {
uint256 length = attestations.length;
if (length == 1) {
return _resolveAttestation(schemaRecord, attestations[0], values[0], isRevocation, availableValue, last);
}
ISchemaResolver resolver = schemaRecord.resolver;
if (address(resolver) == address(0)) {
// Ensure that we don't accept payments if there is no resolver.
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
if (values[i] != 0) {
revert NotPayable();
}
}
if (last) {
_refund(availableValue);
}
return 0;
}
uint256 totalUsedValue = 0;
bool isResolverPayable = resolver.isPayable();
for (uint256 i = 0; i < length; i = uncheckedInc(i)) {
uint256 value = values[i];
// Ensure that we don't accept payments which can't be forwarded to the resolver.
if (value == 0) {
continue;
}
if (!isResolverPayable) {
revert NotPayable();
}
// Ensure that the attester/revoker doesn't try to spend more than available.
if (value > availableValue) {
revert InsufficientValue();
}
// Ensure to deduct the sent value explicitly and add it to the total used value by the batch.
unchecked {
availableValue -= value;
totalUsedValue += value;
}
}
if (isRevocation) {
if (!resolver.multiRevoke{ value: totalUsedValue }(attestations, values)) {
revert InvalidRevocations();
}
} else if (!resolver.multiAttest{ value: totalUsedValue }(attestations, values)) {
revert InvalidAttestations();
}
if (last) {
_refund(availableValue);
}
return totalUsedValue;
}
/// @dev Calculates a UID for a given attestation.
/// @param attestation The input attestation.
/// @param bump A bump value to use in case of a UID conflict.
/// @return Attestation UID.
function _getUID(Attestation memory attestation, uint32 bump) private pure returns (bytes32) {
return
keccak256(
abi.encodePacked(
attestation.schema,
attestation.recipient,
attestation.attester,
attestation.time,
attestation.expirationTime,
attestation.revocable,
attestation.refUID,
attestation.data,
bump
)
);
}
/// @dev Refunds remaining ETH amount to the attester.
/// @param remainingValue The remaining ETH amount that was not sent to the resolver.
function _refund(uint256 remainingValue) private {
if (remainingValue > 0) {
// Using a regular transfer here might revert, for some non-EOA attesters, due to exceeding of the 2300
// gas limit which is why we're using call instead (via sendValue), which the 2300 gas limit does not
// apply for.
payable(msg.sender).sendValue(remainingValue);
}
}
/// @dev Timestamps the specified bytes32 data.
/// @param data The data to timestamp.
/// @param time The timestamp.
function _timestamp(bytes32 data, uint64 time) private {
if (_timestamps[data] != 0) {
revert AlreadyTimestamped();
}
_timestamps[data] = time;
emit Timestamped(data, time);
}
/// @dev Revokes the specified bytes32 data.
/// @param revoker The revoking account.
/// @param data The data to revoke.
/// @param time The timestamp the data was revoked with.
function _revokeOffchain(address revoker, bytes32 data, uint64 time) private {
mapping(bytes32 data => uint64 timestamp) storage revocations = _revocationsOffchain[revoker];
if (revocations[data] != 0) {
revert AlreadyRevokedOffchain();
}
revocations[data] = time;
emit RevokedOffchain(revoker, data, time);
}
/// @dev Merges lists of UIDs.
/// @param uidLists The provided lists of UIDs.
/// @param uidCount Total UID count.
/// @return A merged and flatten list of all the UIDs.
function _mergeUIDs(bytes32[][] memory uidLists, uint256 uidCount) private pure returns (bytes32[] memory) {
bytes32[] memory uids = new bytes32[](uidCount);
uint256 currentIndex = 0;
uint256 uidListLength = uidLists.length;
for (uint256 i = 0; i < uidListLength; i = uncheckedInc(i)) {
bytes32[] memory currentUIDs = uidLists[i];
uint256 currentUIDsLength = currentUIDs.length;
for (uint256 j = 0; j < currentUIDsLength; j = uncheckedInc(j)) {
uids[currentIndex] = currentUIDs[j];
unchecked {
++currentIndex;
}
}
}
return uids;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import { SignatureChecker } from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import { DeadlineExpired, NO_EXPIRATION_TIME, Signature, InvalidSignature } from "./../Common.sol";
// prettier-ignore
import {
AttestationRequestData,
DelegatedAttestationRequest,
DelegatedRevocationRequest,
RevocationRequestData
} from "../IEAS.sol";
/// @title EIP1271Verifier
/// @notice EIP1271Verifier typed signatures verifier for EAS delegated attestations.
abstract contract EIP1271Verifier is EIP712 {
using Address for address;
error InvalidNonce();
// The hash of the data type used to relay calls to the attest function. It's the value of
// keccak256("Attest(address attester,bytes32 schema,address recipient,uint64 expirationTime,bool revocable,bytes32 refUID,bytes data,uint256 value,uint256 nonce,uint64 deadline)").
bytes32 private constant ATTEST_TYPEHASH = 0xfeb2925a02bae3dae48d424a0437a2b6ac939aa9230ddc55a1a76f065d988076;
// The hash of the data type used to relay calls to the revoke function. It's the value of
// keccak256("Revoke(address revoker,bytes32 schema,bytes32 uid,uint256 value,uint256 nonce,uint64 deadline)").
bytes32 private constant REVOKE_TYPEHASH = 0xb5d556f07587ec0f08cf386545cc4362c702a001650c2058002615ee5c9d1e75;
// The user readable name of the signing domain.
string private _name;
// Replay protection nonces.
mapping(address attester => uint256 nonce) private _nonces;
/// @notice Emitted when users invalidate nonces by increasing their nonces to (higher) new values.
/// @param oldNonce The previous nonce.
/// @param newNonce The new value.
event NonceIncreased(uint256 oldNonce, uint256 newNonce);
/// @dev Creates a new EIP1271Verifier instance.
/// @param version The current major version of the signing domain
constructor(string memory name, string memory version) EIP712(name, version) {
_name = name;
}
/// @notice Returns the domain separator used in the encoding of the signatures for attest, and revoke.
/// @return The domain separator used in the encoding of the signatures for attest, and revoke.
function getDomainSeparator() external view returns (bytes32) {
return _domainSeparatorV4();
}
/// @notice Returns the current nonce per-account.
/// @param account The requested account.
/// @return The current nonce.
function getNonce(address account) external view returns (uint256) {
return _nonces[account];
}
/// @notice Returns the EIP712 type hash for the attest function.
/// @return The EIP712 type hash for the attest function.
function getAttestTypeHash() external pure returns (bytes32) {
return ATTEST_TYPEHASH;
}
/// @notice Returns the EIP712 type hash for the revoke function.
/// @return The EIP712 type hash for the revoke function.
function getRevokeTypeHash() external pure returns (bytes32) {
return REVOKE_TYPEHASH;
}
/// @notice Returns the EIP712 name.
/// @return The EIP712 name.
function getName() external view returns (string memory) {
return _name;
}
/// @notice Provides users an option to invalidate nonces by increasing their nonces to (higher) new values.
/// @param newNonce The (higher) new value.
function increaseNonce(uint256 newNonce) external {
uint256 oldNonce = _nonces[msg.sender];
if (newNonce <= oldNonce) {
revert InvalidNonce();
}
_nonces[msg.sender] = newNonce;
emit NonceIncreased({ oldNonce: oldNonce, newNonce: newNonce });
}
/// @dev Verifies delegated attestation request.
/// @param request The arguments of the delegated attestation request.
function _verifyAttest(DelegatedAttestationRequest memory request) internal {
if (request.deadline != NO_EXPIRATION_TIME && request.deadline < _time()) {
revert DeadlineExpired();
}
AttestationRequestData memory data = request.data;
Signature memory signature = request.signature;
bytes32 hash = _hashTypedDataV4(
keccak256(
abi.encode(
ATTEST_TYPEHASH,
request.attester,
request.schema,
data.recipient,
data.expirationTime,
data.revocable,
data.refUID,
keccak256(data.data),
data.value,
_nonces[request.attester]++,
request.deadline
)
)
);
if (
!SignatureChecker.isValidSignatureNow(
request.attester,
hash,
abi.encodePacked(signature.r, signature.s, signature.v)
)
) {
revert InvalidSignature();
}
}
/// @dev Verifies delegated revocation request.
/// @param request The arguments of the delegated revocation request.
function _verifyRevoke(DelegatedRevocationRequest memory request) internal {
if (request.deadline != NO_EXPIRATION_TIME && request.deadline < _time()) {
revert DeadlineExpired();
}
RevocationRequestData memory data = request.data;
Signature memory signature = request.signature;
bytes32 hash = _hashTypedDataV4(
keccak256(
abi.encode(
REVOKE_TYPEHASH,
request.revoker,
request.schema,
data.uid,
data.value,
_nonces[request.revoker]++,
request.deadline
)
)
);
if (
!SignatureChecker.isValidSignatureNow(
request.revoker,
hash,
abi.encodePacked(signature.r, signature.s, signature.v)
)
) {
revert InvalidSignature();
}
}
/// @dev Returns the current's block timestamp. This method is overridden during tests and used to simulate the
/// current block time.
function _time() internal view virtual returns (uint64) {
return uint64(block.timestamp);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Attestation } from "./../Common.sol";
import { ISemver } from "./../ISemver.sol";
/// @title ISchemaResolver
/// @notice The interface of an optional schema resolver.
interface ISchemaResolver is ISemver {
/// @notice Checks if the resolver can be sent ETH.
/// @return Whether the resolver supports ETH transfers.
function isPayable() external pure returns (bool);
/// @notice Processes an attestation and verifies whether it's valid.
/// @param attestation The new attestation.
/// @return Whether the attestation is valid.
function attest(Attestation calldata attestation) external payable returns (bool);
/// @notice Processes multiple attestations and verifies whether they are valid.
/// @param attestations The new attestations.
/// @param values Explicit ETH amounts which were sent with each attestation.
/// @return Whether all the attestations are valid.
function multiAttest(
Attestation[] calldata attestations,
uint256[] calldata values
) external payable returns (bool);
/// @notice Processes an attestation revocation and verifies if it can be revoked.
/// @param attestation The existing attestation to be revoked.
/// @return Whether the attestation can be revoked.
function revoke(Attestation calldata attestation) external payable returns (bool);
/// @notice Processes revocation of multiple attestation and verifies they can be revoked.
/// @param attestations The existing attestations to be revoked.
/// @param values Explicit ETH amounts which were sent with each revocation.
/// @return Whether the attestations can be revoked.
function multiRevoke(
Attestation[] calldata attestations,
uint256[] calldata values
) external payable returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// A representation of an empty/uninitialized UID.
bytes32 constant EMPTY_UID = 0;
// A zero expiration represents an non-expiring attestation.
uint64 constant NO_EXPIRATION_TIME = 0;
error AccessDenied();
error DeadlineExpired();
error InvalidEAS();
error InvalidLength();
error InvalidSignature();
error NotFound();
/// @notice A struct representing ECDSA signature data.
struct Signature {
uint8 v; // The recovery ID.
bytes32 r; // The x-coordinate of the nonce R.
bytes32 s; // The signature data.
}
/// @notice A struct representing a single attestation.
struct Attestation {
bytes32 uid; // A unique identifier of the attestation.
bytes32 schema; // The unique identifier of the schema.
uint64 time; // The time when the attestation was created (Unix timestamp).
uint64 expirationTime; // The time when the attestation expires (Unix timestamp).
uint64 revocationTime; // The time when the attestation was revoked (Unix timestamp).
bytes32 refUID; // The UID of the related attestation.
address recipient; // The recipient of the attestation.
address attester; // The attester/sender of the attestation.
bool revocable; // Whether the attestation is revocable.
bytes data; // Custom attestation data.
}
/// @notice A helper function to work with unchecked iterators in loops.
function uncheckedInc(uint256 i) pure returns (uint256 j) {
unchecked {
j = i + 1;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ISchemaRegistry } from "./ISchemaRegistry.sol";
import { ISemver } from "./ISemver.sol";
import { Attestation, Signature } from "./Common.sol";
/// @notice A struct representing the arguments of the attestation request.
struct AttestationRequestData {
address recipient; // The recipient of the attestation.
uint64 expirationTime; // The time when the attestation expires (Unix timestamp).
bool revocable; // Whether the attestation is revocable.
bytes32 refUID; // The UID of the related attestation.
bytes data; // Custom attestation data.
uint256 value; // An explicit ETH amount to send to the resolver. This is important to prevent accidental user errors.
}
/// @notice A struct representing the full arguments of the attestation request.
struct AttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData data; // The arguments of the attestation request.
}
/// @notice A struct representing the full arguments of the full delegated attestation request.
struct DelegatedAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData data; // The arguments of the attestation request.
Signature signature; // The ECDSA signature data.
address attester; // The attesting account.
uint64 deadline; // The deadline of the signature/request.
}
/// @notice A struct representing the full arguments of the multi attestation request.
struct MultiAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData[] data; // The arguments of the attestation request.
}
/// @notice A struct representing the full arguments of the delegated multi attestation request.
struct MultiDelegatedAttestationRequest {
bytes32 schema; // The unique identifier of the schema.
AttestationRequestData[] data; // The arguments of the attestation requests.
Signature[] signatures; // The ECDSA signatures data. Please note that the signatures are assumed to be signed with increasing nonces.
address attester; // The attesting account.
uint64 deadline; // The deadline of the signature/request.
}
/// @notice A struct representing the arguments of the revocation request.
struct RevocationRequestData {
bytes32 uid; // The UID of the attestation to revoke.
uint256 value; // An explicit ETH amount to send to the resolver. This is important to prevent accidental user errors.
}
/// @notice A struct representing the full arguments of the revocation request.
struct RevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData data; // The arguments of the revocation request.
}
/// @notice A struct representing the arguments of the full delegated revocation request.
struct DelegatedRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData data; // The arguments of the revocation request.
Signature signature; // The ECDSA signature data.
address revoker; // The revoking account.
uint64 deadline; // The deadline of the signature/request.
}
/// @notice A struct representing the full arguments of the multi revocation request.
struct MultiRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData[] data; // The arguments of the revocation request.
}
/// @notice A struct representing the full arguments of the delegated multi revocation request.
struct MultiDelegatedRevocationRequest {
bytes32 schema; // The unique identifier of the schema.
RevocationRequestData[] data; // The arguments of the revocation requests.
Signature[] signatures; // The ECDSA signatures data. Please note that the signatures are assumed to be signed with increasing nonces.
address revoker; // The revoking account.
uint64 deadline; // The deadline of the signature/request.
}
/// @title IEAS
/// @notice EAS - Ethereum Attestation Service interface.
interface IEAS is ISemver {
/// @notice Emitted when an attestation has been made.
/// @param recipient The recipient of the attestation.
/// @param attester The attesting account.
/// @param uid The UID of the new attestation.
/// @param schemaUID The UID of the schema.
event Attested(address indexed recipient, address indexed attester, bytes32 uid, bytes32 indexed schemaUID);
/// @notice Emitted when an attestation has been revoked.
/// @param recipient The recipient of the attestation.
/// @param attester The attesting account.
/// @param schemaUID The UID of the schema.
/// @param uid The UID the revoked attestation.
event Revoked(address indexed recipient, address indexed attester, bytes32 uid, bytes32 indexed schemaUID);
/// @notice Emitted when a data has been timestamped.
/// @param data The data.
/// @param timestamp The timestamp.
event Timestamped(bytes32 indexed data, uint64 indexed timestamp);
/// @notice Emitted when a data has been revoked.
/// @param revoker The address of the revoker.
/// @param data The data.
/// @param timestamp The timestamp.
event RevokedOffchain(address indexed revoker, bytes32 indexed data, uint64 indexed timestamp);
/// @notice Returns the address of the global schema registry.
/// @return The address of the global schema registry.
function getSchemaRegistry() external view returns (ISchemaRegistry);
/// @notice Attests to a specific schema.
/// @param request The arguments of the attestation request.
/// @return The UID of the new attestation.
///
/// Example:
/// attest({
/// schema: "0facc36681cbe2456019c1b0d1e7bedd6d1d40f6f324bf3dd3a4cef2999200a0",
/// data: {
/// recipient: "0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf",
/// expirationTime: 0,
/// revocable: true,
/// refUID: "0x0000000000000000000000000000000000000000000000000000000000000000",
/// data: "0xF00D",
/// value: 0
/// }
/// })
function attest(AttestationRequest calldata request) external payable returns (bytes32);
/// @notice Attests to a specific schema via the provided ECDSA signature.
/// @param delegatedRequest The arguments of the delegated attestation request.
/// @return The UID of the new attestation.
///
/// Example:
/// attestByDelegation({
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: {
/// recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
/// expirationTime: 1673891048,
/// revocable: true,
/// refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
/// data: '0x1234',
/// value: 0
/// },
/// signature: {
/// v: 28,
/// r: '0x148c...b25b',
/// s: '0x5a72...be22'
/// },
/// attester: '0xc5E8740aD971409492b1A63Db8d83025e0Fc427e',
/// deadline: 1673891048
/// })
function attestByDelegation(
DelegatedAttestationRequest calldata delegatedRequest
) external payable returns (bytes32);
/// @notice Attests to multiple schemas.
/// @param multiRequests The arguments of the multi attestation requests. The requests should be grouped by distinct
/// schema ids to benefit from the best batching optimization.
/// @return The UIDs of the new attestations.
///
/// Example:
/// multiAttest([{
/// schema: '0x33e9094830a5cba5554d1954310e4fbed2ef5f859ec1404619adea4207f391fd',
/// data: [{
/// recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
/// expirationTime: 1673891048,
/// revocable: true,
/// refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
/// data: '0x1234',
/// value: 1000
/// },
/// {
/// recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
/// expirationTime: 0,
/// revocable: false,
/// refUID: '0x480df4a039efc31b11bfdf491b383ca138b6bde160988222a2a3509c02cee174',
/// data: '0x00',
/// value: 0
/// }],
/// },
/// {
/// schema: '0x5ac273ce41e3c8bfa383efe7c03e54c5f0bff29c9f11ef6ffa930fc84ca32425',
/// data: [{
/// recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
/// expirationTime: 0,
/// revocable: true,
/// refUID: '0x75bf2ed8dca25a8190c50c52db136664de25b2449535839008ccfdab469b214f',
/// data: '0x12345678',
/// value: 0
/// },
/// }])
function multiAttest(MultiAttestationRequest[] calldata multiRequests) external payable returns (bytes32[] memory);
/// @notice Attests to multiple schemas using via provided ECDSA signatures.
/// @param multiDelegatedRequests The arguments of the delegated multi attestation requests. The requests should be
/// grouped by distinct schema ids to benefit from the best batching optimization.
/// @return The UIDs of the new attestations.
///
/// Example:
/// multiAttestByDelegation([{
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: [{
/// recipient: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
/// expirationTime: 1673891048,
/// revocable: true,
/// refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
/// data: '0x1234',
/// value: 0
/// },
/// {
/// recipient: '0xdEADBeAFdeAdbEafdeadbeafDeAdbEAFdeadbeaf',
/// expirationTime: 0,
/// revocable: false,
/// refUID: '0x0000000000000000000000000000000000000000000000000000000000000000',
/// data: '0x00',
/// value: 0
/// }],
/// signatures: [{
/// v: 28,
/// r: '0x148c...b25b',
/// s: '0x5a72...be22'
/// },
/// {
/// v: 28,
/// r: '0x487s...67bb',
/// s: '0x12ad...2366'
/// }],
/// attester: '0x1D86495b2A7B524D747d2839b3C645Bed32e8CF4',
/// deadline: 1673891048
/// }])
function multiAttestByDelegation(
MultiDelegatedAttestationRequest[] calldata multiDelegatedRequests
) external payable returns (bytes32[] memory);
/// @notice Revokes an existing attestation to a specific schema.
/// @param request The arguments of the revocation request.
///
/// Example:
/// revoke({
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: {
/// uid: '0x101032e487642ee04ee17049f99a70590c735b8614079fc9275f9dd57c00966d',
/// value: 0
/// }
/// })
function revoke(RevocationRequest calldata request) external payable;
/// @notice Revokes an existing attestation to a specific schema via the provided ECDSA signature.
/// @param delegatedRequest The arguments of the delegated revocation request.
///
/// Example:
/// revokeByDelegation({
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: {
/// uid: '0xcbbc12102578c642a0f7b34fe7111e41afa25683b6cd7b5a14caf90fa14d24ba',
/// value: 0
/// },
/// signature: {
/// v: 27,
/// r: '0xb593...7142',
/// s: '0x0f5b...2cce'
/// },
/// revoker: '0x244934dd3e31bE2c81f84ECf0b3E6329F5381992',
/// deadline: 1673891048
/// })
function revokeByDelegation(DelegatedRevocationRequest calldata delegatedRequest) external payable;
/// @notice Revokes existing attestations to multiple schemas.
/// @param multiRequests The arguments of the multi revocation requests. The requests should be grouped by distinct
/// schema ids to benefit from the best batching optimization.
///
/// Example:
/// multiRevoke([{
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: [{
/// uid: '0x211296a1ca0d7f9f2cfebf0daaa575bea9b20e968d81aef4e743d699c6ac4b25',
/// value: 1000
/// },
/// {
/// uid: '0xe160ac1bd3606a287b4d53d5d1d6da5895f65b4b4bab6d93aaf5046e48167ade',
/// value: 0
/// }],
/// },
/// {
/// schema: '0x5ac273ce41e3c8bfa383efe7c03e54c5f0bff29c9f11ef6ffa930fc84ca32425',
/// data: [{
/// uid: '0x053d42abce1fd7c8fcddfae21845ad34dae287b2c326220b03ba241bc5a8f019',
/// value: 0
/// },
/// }])
function multiRevoke(MultiRevocationRequest[] calldata multiRequests) external payable;
/// @notice Revokes existing attestations to multiple schemas via provided ECDSA signatures.
/// @param multiDelegatedRequests The arguments of the delegated multi revocation attestation requests. The requests
/// should be grouped by distinct schema ids to benefit from the best batching optimization.
///
/// Example:
/// multiRevokeByDelegation([{
/// schema: '0x8e72f5bc0a8d4be6aa98360baa889040c50a0e51f32dbf0baa5199bd93472ebc',
/// data: [{
/// uid: '0x211296a1ca0d7f9f2cfebf0daaa575bea9b20e968d81aef4e743d699c6ac4b25',
/// value: 1000
/// },
/// {
/// uid: '0xe160ac1bd3606a287b4d53d5d1d6da5895f65b4b4bab6d93aaf5046e48167ade',
/// value: 0
/// }],
/// signatures: [{
/// v: 28,
/// r: '0x148c...b25b',
/// s: '0x5a72...be22'
/// },
/// {
/// v: 28,
/// r: '0x487s...67bb',
/// s: '0x12ad...2366'
/// }],
/// revoker: '0x244934dd3e31bE2c81f84ECf0b3E6329F5381992',
/// deadline: 1673891048
/// }])
function multiRevokeByDelegation(
MultiDelegatedRevocationRequest[] calldata multiDelegatedRequests
) external payable;
/// @notice Timestamps the specified bytes32 data.
/// @param data The data to timestamp.
/// @return The timestamp the data was timestamped with.
function timestamp(bytes32 data) external returns (uint64);
/// @notice Timestamps the specified multiple bytes32 data.
/// @param data The data to timestamp.
/// @return The timestamp the data was timestamped with.
function multiTimestamp(bytes32[] calldata data) external returns (uint64);
/// @notice Revokes the specified bytes32 data.
/// @param data The data to timestamp.
/// @return The timestamp the data was revoked with.
function revokeOffchain(bytes32 data) external returns (uint64);
/// @notice Revokes the specified multiple bytes32 data.
/// @param data The data to timestamp.
/// @return The timestamp the data was revoked with.
function multiRevokeOffchain(bytes32[] calldata data) external returns (uint64);
/// @notice Returns an existing attestation by UID.
/// @param uid The UID of the attestation to retrieve.
/// @return The attestation data members.
function getAttestation(bytes32 uid) external view returns (Attestation memory);
/// @notice Checks whether an attestation exists.
/// @param uid The UID of the attestation to retrieve.
/// @return Whether an attestation exists.
function isAttestationValid(bytes32 uid) external view returns (bool);
/// @notice Returns the timestamp that the specified data was timestamped with.
/// @param data The data to query.
/// @return The timestamp the data was timestamped with.
function getTimestamp(bytes32 data) external view returns (uint64);
/// @notice Returns the timestamp that the specified data was timestamped with.
/// @param data The data to query.
/// @return The timestamp the data was timestamped with.
function getRevokeOffchain(address revoker, bytes32 data) external view returns (uint64);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
import { ISemver } from "./ISemver.sol";
/// @title Semver
/// @notice A simple contract for managing contract versions.
contract Semver is ISemver {
// Contract's major version number.
uint256 private immutable _major;
// Contract's minor version number.
uint256 private immutable _minor;
// Contract's patch version number.
uint256 private immutable _patch;
/// @dev Create a new Semver instance.
/// @param major Major version number.
/// @param minor Minor version number.
/// @param patch Patch version number.
constructor(uint256 major, uint256 minor, uint256 patch) {
_major = major;
_minor = minor;
_patch = patch;
}
/// @notice Returns the full semver contract version.
/// @return Semver contract version as a string.
function version() external view returns (string memory) {
return
string(
abi.encodePacked(Strings.toString(_major), ".", Strings.toString(_minor), ".", Strings.toString(_patch))
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { ISemver } from "./ISemver.sol";
import { ISchemaResolver } from "./resolver/ISchemaResolver.sol";
/// @notice A struct representing a record for a submitted schema.
struct SchemaRecord {
bytes32 uid; // The unique identifier of the schema.
ISchemaResolver resolver; // Optional schema resolver.
bool revocable; // Whether the schema allows revocations explicitly.
string schema; // Custom specification of the schema (e.g., an ABI).
}
/// @title ISchemaRegistry
/// @notice The interface of global attestation schemas for the Ethereum Attestation Service protocol.
interface ISchemaRegistry is ISemver {
/// @notice Emitted when a new schema has been registered
/// @param uid The schema UID.
/// @param registerer The address of the account used to register the schema.
/// @param schema The schema data.
event Registered(bytes32 indexed uid, address indexed registerer, SchemaRecord schema);
/// @notice Submits and reserves a new schema
/// @param schema The schema data schema.
/// @param resolver An optional schema resolver.
/// @param revocable Whether the schema allows revocations explicitly.
/// @return The UID of the new schema.
function register(string calldata schema, ISchemaResolver resolver, bool revocable) external returns (bytes32);
/// @notice Returns an existing schema by UID
/// @param uid The UID of the schema to retrieve.
/// @return The schema data members.
function getSchema(bytes32 uid) external view returns (SchemaRecord memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.20;
import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Safe Wallet (previously Gnosis Safe).
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title ISemver
/// @notice A semver interface.
interface ISemver {
/// @notice Returns the full semver contract version.
/// @return Semver contract version as a string.
function version() external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}